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Abstract

Monte Carlo simulations were used to search for the probability estimator for the unbiased estimate of the Weibull parameters in the linear
regression method. Compared with commonly-used probability estimators, the estimator proposed gives a more accurate estimation of the
Weibull modulus and the same estimation precision of the scale parameter. It is found that the estimator proposed is more conservative than
the estimatorP = (i − 0.5)/n recommended by previous authors, and hence results in a higher safety in reliability predictions. The unbiased
p ted Weibull
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roperties of the estimated Weibull parameters were validated with actual experimental data. It is also concluded that the estima
odulus from actual experimental data is more dispersive than that from Monte Carlo simulation, which arises from the fact that th
ata from actual experiments does not perfectly follow the Weibull statistics.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Weibull statistics has been commonly used to character-
ze the statistical variation in the fracture strength of brittle

aterials such as ceramics, glasses and solid catalysts.1–4 It
s based on a “weakest link theory”, which means that the

ost serious flaw in the material will control the strength,
ike a chain breaking if the weakest link fails. The most seri-
us flaw is not necessarily the largest one because its severity
lso relies on its location and orientation. In other words, the
aw subjected to the highest stress intensity factor will be
trength controlling.

Using Weibull’s two-parameter distribution, the cumula-
ive probability of failureP at or below a stressσ is repre-
ented by1,2,5

= 1 − exp

[
−

(
σ

σ0

)m]
(1)
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wherem andσ0 are the Weibull modulus and the scale
rameter, respectively. The Weibull modulusm, also called
the shape parameter, represents the scatter in the fr
strength. A higherm leads to a steeper distribution fun
tion and thus a lower dispersion of the fracture strength.
scale parameterσ0 corresponding to the fracture stress w
a failure probability of 63.2% is closely related to the m
strength of the distribution,̄σ.1,5

σ̄ = σ0Γ

(
1 + 1

m

)
(2)

whereΓ is the gamma function. For the Weibull modu
of 5–20, a typical range for technical ceramics,5 Γ (1 + 1/m)
takes values between 0.9 and 1.

There are several methods available in the literature5–14

for the determination of the Weibull distribution parame
from a set of experimentally measured fracture stress
has been shown that the maximum likelihood (ML) met
leads to the highest estimation precision of the Weibull m
ulus, which has been recommended by previous author1,5,7
955-2219/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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However, the most widely used may be the linear regression
(LR) method due to its simplicity. Moreover, the ML method
results more often in an overestimation of the Weibull modu-
lus than underestimation, and hence results in a lower safety
than the LR method in reliability prediction.10,14 From an
engineering point of view, the LR method is, therefore, to be
preferred.

In the LR method, the measured fracture stresses are
ranked in ascending order and then a probability of failurePi,
is assigned to each stressσi. Since the true value ofPi is un-
known, a prescribed estimator has to be used. The following
four expressions are often applied to define the probability
estimator.8–12

Pi = i − 0.5

n
(3a)

Pi = i

n + 1
(3b)

Pi = i − 0.3

n + 0.4
(3c)

Pi = i − 3/8

n + 1/4
(3d)

wherePi is the probability of failure for theith ranked stress
datum, andn is the sample size.
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the unbiased estimation of the Weibull parameters. A Monte
Carlo simulation was used for this purpose.

2. Monte Carlo simulation

From Eqs.(3a)–(3d), it is shown that the probability esti-
mator should have the following general expression.

Pi = i − α

n + β
(5)

By varying the values ofα andβ, large numbers of functions
can be obtained. Clearly, theα-value is required to be less than
unity; otherwise a negative value of the probability of failure
in case ofi = 1 arises. Due to the requirement of statistical
inference, theβ-value is also necessary to be very small,
usually not larger than unity, especially forn ≤ 50.14 The
disadvantage of a largeβ-value is that a poor precision of
the estimated scale parameter takes place.13 Therefore, the
numeric areas of theα andβ-values are generally 0≤ α < 1
and 0≤ β ≤ 1, respectively.

If α andβ are restricted to two decimals, a total of 101
values are obtained forβ and 100 values forα due toα < 1.
And thenα = 0.999 is added. As a result, 1012 possible com-
binations of theα and β-values are produced. In order to
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By taking the logarithm twice, Eq.(1) can be rewritten i
linear form.

n ln

(
1

1 − P

)
= m lnσ − m lnσ0 (4)

he Weibull modulus can thus be obtained directly from
lope term in Eq.(4) and the scale parameter can be ded
rom the intercept term.

However, the estimators of the Weibull modulus are
ays biased for both the ML and LR methods.5–7,15,16In
ost cases the bias increases rapidly as the sampl
ecreases. In the LR method, different probability est

ors also lead to different biases of the estimated We
odulus. It has been shown that Eq.(3b) gives the larges
iased estimate of the Weibull modulus, while Eq.(3a)
esults in the least bias forn ≥ 20.9–12 To overcome thi
hortcoming, several authors proposed the use of a
ection factor to adjust the bias of the estimated We
odulus.9,15,16 However, both analytical analyses and
erical calculations revealed that each set of strength
ives the statistically correct Weibull parameters and

he bias arises only from the method of adding the pa
ters, if one tries to obtain a mean value from a num
f sets of strength data.17 In practice, when only one set
trength data is available, the correction factor should n
pplied.

The probability estimator has a significant effect on
ias of the estimated Weibull modulus in the LR meth
he objective of this paper is to try to find appropriate
ressions to define the probability estimator, which lead
earch for the combination leading to an unbiased est
f the Weibull modulus, a Monte Carlo simulation was us
s shown inFig. 1.

Eq.(1) can be rewritten as

= σ0

[
ln

(
1

1 − P

)]1/m

(6)

f we consider a large “specimen” population with prescri
andσ0 values, i.e.mtrue andσ0,true, random strength da

an be obtained from Eq.(6) provided random numbers b
ween 0 and 1 are substituted for the probability of
re P. For the sake of convenience, we letmtrue=10 and
0,true= 1 throughout this study. A computer program w
ritten, which used a sample of random numbers to ob
trength valuesσ1,σ2, . . .,σi, . . .,σn. This set of strength va
es, regarded as a fictitious sample, was ranked in asce
rder and the probabilities of failure were calculated from
5) with each combination of theα andβ-values. The samp
as then analyzed with the LR method to give the estim
alue of the Weibull modulus. This procedure was repe
0,000 times. Consequently, a total of 10,000 samples
enerated and 10,000 estimated values of the Weibull m

us were obtained for each combination of theα andβ-values
hen the mean value ¯m, standard deviationSm and coefficien
f variation CVm of these moduli were computed from

¯ =
104∑
j=1

mj

104 (7)
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Fig. 1. Schematic flow diagram of the Monte Carlo simulation.

Sm
2 =

104∑
j=1

(mj − m̄)2

104 − 1
(8)

CVm = Sm

m̄
(9)

wheremj is the estimated Weibull modulus of thejth sample.
Clearly, the combination of theα andβ-values, which makes
m̄/mtrue be equal to unity, leads to an unbiased estimate of
the Weibull modulus.

For illustration of the effect of the sample size, the gen-
erated random samples were of sizen = 10, 15, 20, 25, 30,
35, 40, 45 and 50. The combination of theα andβ-values
leading to an unbiased estimate of the Weibull modulus was
determined for each sample size.

It should be pointed out that, although the above simu-
lation was carried out for the arbitrarily chosen values of
mtrue=10 andσ0,true= 1 its results are valid for any value of
mtrue and σ0,true, for previous studies have shown that the
values ofm̄/mtrue andSm/mtrue, and the distribution of the
estimatedm/mtrueare independent of the prescribed values of
mtrue andσ0,true for the LR method.5,6,9,10

3. Experimental

A sample of alumina agglomerates, often used as cata-
lyst supports in chemical industry, was investigated in this
work. The specimens are spherical in shape, with a diameter
of 5.1± 0.2 mm and a pellet density of 1.382 g/cm3. They
are brittle materials fabricated deliberately to produce high
porosity and optimized pore distribution.

The tensile strength was measured using a diametral com-
pression test. To adequately characterize the strength prop-
erties of the population, a sufficiently large number of the
strength tests of 500 was performed. A ZQJ-II strength
tester made in Dalian, China, was used, described in detail
elsewhere.4,18 The fracture stress was calculated according
to the equation of Hiramatsu and Oka:19

σ = 2.8F

πd2 (10)

whereF is the load at fracture andd is the specimen diameter.

4. Results and discussion

4.1. Probability estimator for the unbiased estimate of
the Weibull modulus
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By Monte Carlo simulation in Section2, the combinatio
f theα andβ-values leading to an unbiased estimate o
eibull modulus was determined for each sample siz

isted inTable 1. It is clear thatα andβ both are sensitive t
he sample size; however, there is no a distinct relation
xisting betweenα or β and the sample size.

.2. Comparisons with the commonly-used probability
stimators

A Monte Carlo simulation procedure similar to that m
ioned in Section2 was conducted for the commonly-us
robability estimators, Eqs.(3a)–(3d). Fig. 2 shows the de
endence of the normalized mean values of the estim
eibull moduli,m̄/mtrue, on the sample sizen for five prob-

bility estimators investigated. It can be seen that with
se of the probability estimator proposed in this work
ormalized mean Weibull moduli are always equal to u

able 1
andβ-values in Eq.(5) leading to unbiased estimate

α β

0 0.37 0.24
5 0.54 0.85
0 0.49 0.32
5 0.47 0.13
0 0.53 0.41
5 0.57 0.64
0 0.56 0.52
5 0.51 0.14
0 0.56 0.42
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Fig. 2. Estimated Weibull modulus as a function of the sample size. (©) Eq.
(3a), (♦) Eq.(3b), (�) Eq.(3c), (�) Eq.(3d), and (�) unbiased.

at all sample sizes examined, which reveals that this estima-
tor leads to the unbiased estimate of the Weibull modulus.
Among the commonly-used probability estimators, Eq.(3a)
gives the least-biased estimate of the Weibull modulus for
n ≥ 20. The next is Eq.(3d), followed by Eq.(3c). The esti-
mator, Eq.(3b) leads to the largest bias for all sample sizes
examined. It is also clear that as the sample size decreases the
bias increases rapidly for Eqs.(3a) and (3d). These results are
in agreement with those reported by previous authors.9–12

In Fig. 3, the coefficient of variation of the Weibull mod-
ulus is plotted as a function of the sample size. Clearly, the
coefficient of variation is as expected decreasing with in-
creasing sample size for all probability estimators. It is also
shown that the coefficients of variation for the different esti-
mators are approximately equal at all sample sizes; however,
it seems the estimator proposed in this work results in the
least coefficients of variation at most of the sample sizes.

Statistics textbook tells us that the higher the probability of
computing an estimate near to the true value is, the higher the
estimation precision is. It indicates that the estimation pre-
cision of the Weibull modulus is related not only to the bias
but also to the coefficient of variation. The latter describes the
dispersion or breadth of the estimated data distribution, while
the former shows the centrality or location of the distribution.
The smaller both of them are, the more accurate the estimated
Weibull modulus is. Based on this criterion, the best probabil-
i ,
t g to
t most
a there-
f ility
e n,
w
w any
a

the
fi ond.

Fig. 3. Dependence of the coefficient of variation of the estimated Weibull
modulus on the sample size. (©) Eq. (3a), (♦) Eq. (3b), (�) Eq. (3c), (�)
Eq.(3d), and (�) unbiased.

An overestimation of the Weibull modulus often leads to an
underestimation of the probability of failure at low stresses,
and hence a lower safety arises in reliability prediction.

Fig. 4 shows the occurrence probability of the Weibull
modulus overestimation, i.e.m/mtrue> 1 as a function of the
sample size. The higher the probability is, the lower the safety
is. It can be seen fromFig. 4 that the probability for the es-
timator, Eq.(3a) is the highest; however, it is still less than
50% forn ≥ 15. It implies that for the LR method with differ-
ent probability estimators, the underestimation of the Weibull
modulus always occurs more frequently than the overestima-
tion. It is also clear that the estimator for the unbiased esti-
mate of the Weibull modulus results in a higher safety than
Eq.(3a). However, the estimator leading to the highest safety
is Eq.(3b) though it gives the worst precision of estimation.

F as a
f
E

ty estimator can be judged fromFigs. 2 and 3. Apparently
he probability estimator proposed in this work, leadin
he unbiased estimate of the Weibull modulus, gives the
ccurate estimation for each sample size, and should,

ore, be preferred. Among the commonly-used probab
stimators, Eq.(3b) gives the worst precision of estimatio
hile Eq.(3a)leads to the highest precision forn ≥ 20, which
as considered as the best probability estimator by m
uthors.9–12

From an engineering point of view, the safety is of
rst importance, while the estimation precision is the sec
ig. 4. Occurrence probability of the Weibull modulus overestimated
unction of the sample size. (©) Eq. (3a), (♦) Eq. (3b), (�) Eq. (3c), (�)
q. (3d), and (�) unbiased.
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Table 2
Estimated Weibull parameters of experimental data

Methods m σ0 (N/cm2)

LR, Eq.(3a) 4.42 168.35
LR, Eq.(3b) 4.36 168.53
LR, Eq.(3c) 4.39 168.43
LR, Eq.(3d) 4.40 168.40
ML 4.43 168.23

4.3. Estimation of the scale parameter

Similar Monte Carlo simulations were conducted to pro-
duce 10,000 estimated values of the scale parameter,σ0, for
each probability estimator and for each sample size. The
mean value and the coefficient of variation were calculated.
And then the 10,000 estimatedσ0 were ranked in ascending
order and divided into 40 equally sized intervals. The num-
ber of estimatedσ0 falling into each interval was counted.
This number, normalized through division by 10,000, the to-
tal number of estimatedσ0, produces the relative frequency
of occurrence, which was taken as they-value. The midpoint
of the given interval was used as thex-value. The resulting
histogram can be regarded as an empirical probability den-
sity distribution.5 For the sake of comparison, the same data
processing was also carried out for the estimated Weibull
moduli.

As an example, the probability density distributions of the
estimated Weibull modulus and scale parameter at a sample
size of 20 are shown inFig. 5, where thex-axes of two sub-
figures have the same range and the same scale. The results
of other sample sizes are similar to those shown inFig. 5. It
can be seen that all probability estimators give a similar dis-
tribution of σ0/σ0,true that scatters in the vicinity of the true
value in a much smaller range, as compared with the Weibull
modulus. In reality, for any sample size the coefficient of
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m
i eter,
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Fig. 5. Probability density distributions of the estimated Weibull modulus
(A) and scale parameter (B) at a sample sizen = 20. (©) Eq. (3a), (♦) Eq.
(3b), (�) Eq.(3c), (�) Eq.(3d), and (�) unbiased.

true values of the Weibull parameters can be obtained def-
initely only for an infinite number of specimens. However,
a sufficiently large number of tested specimens will give a
quite good approximation. Especially, the Weibull parame-
ters estimated with the maximum likelihood method may be
regarded approximately as the true values.

The advantage of the unbiased estimate is that the mean
Weibull modulus from a number of sets of strength data
should be close to its true value, which can be verified by
the following procedure. The 500 experimentally measured
fracture stresses were treated as a full set. To investigate the
effects of the sample size, the subsets of the full set were se-
lected in groups of 10, 15, 20, 25, 30, 35, 40, 45 and 50. The
subsets were selected randomly from the full set by assigning
a computer-generated random number to each member of the
full set, sorting the stress data according to that number, and
then choosing the first 10, 15, etc., results in the full set. Each
subset was considered as an independent set of data, and its
Weibull modulus was estimated with the LR method with
the estimators, Eqs.(3a)–(3d), and the estimator proposed in
ariation of the estimated scale parameter is about one
f that of the estimated Weibull modulus; therefore, the s
arameter can be estimated with accuracy about an or
agnitude higher than the Weibull modulus.5,14FromFig. 5,

t is also clear that for the estimation of the scale param
here is no significant difference between the probability
imator proposed in this work and the commonly-used o

Note that the distribution ofm/mtrue is asymmetrical an
ightly skewed to the right; the distribution ofσ0/σ0,true, how-
ver, takes an approximately symmetrical form. Simila
ults have also been reported by Khalili and Kromp.5 For any
ample size and any probability estimator, the mean val
he estimated scale parameter is always close to its true
nd its bias is negligible. Therefore, the estimator of the s
arameter obtained with any probability estimator is app

mately unbiased.

.4. Experimental validation

Table 2gives the Weibull parameters of the experim
al data, estimated with different methods. In principle,
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Fig. 6. Weibull modulus of experimental data as a function of the sample
size. (©) Eq.(3a), (♦) Eq.(3b), (�) Eq.(3c), (�) Eq.(3d), and (�) unbiased.

this work. By repeating this procedure, the total number of
the subsets for each sample size amounts to 10,000. Finally,
the mean value and the coefficient of variation of the 10,000
Weibull moduli were calculated for each sample size and for
each probability estimator.

Fig. 6 shows the dependence of the mean value of the
estimated Weibull modulus of actual experimental data on the
sample size. Note that the only probability estimator which
has leveled off as a function of the subset size is the one
proposed in this work. And this estimator yields a Weibull
modulus, which is very close to the true value approximated
by the ML method. Thus, it can be seen that the probability
estimator proposed in this work is certain to give the unbiased
estimate of the Weibull modulus. However, the estimators
of the Weibull modulus, obtained with the commonly-used
probability estimators, are always biased.

F data
v
a

In Fig. 7 the coefficient of variation of the estimated
Weibull modulus of experimental data is plotted as a function
of the sample size, where the dotted line is the curve fitting
result of the data points shown inFig. 3. It can be seen that
the coefficient of variation of the Weibull modulus decreases
with increasing sample size, but independent of the prob-
ability estimators, as similar to the results of Monte Carlo
simulation. It is also clear that the coefficient of variation
from actual experimental data is always higher than that from
Monte Carlo simulation at any sample size. The reason for
this phenomenon is that the strength data from actual experi-
ments does not perfectly follow the Weibull statistics, which
aggravates the dispersion of the estimated Weibull modulus
of actual experimental data.

5. Conclusions

Using a Monte Carlo simulation, a probability estimator
for the unbiased estimate of the Weibull modulus was deter-
mined. Compared with the commonly-used probability es-
timators, the estimator proposed gives a more accurate es-
timation of the Weibull modulus, and the same estimation
precision of the scale parameter, which is much higher than
that of the Weibull modulus. It is concluded that the estimated
s
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ig. 7. Coefficient of variation of the Weibull modulus of experimental
s. the sample size. (©) Eq. (3a), (♦) Eq. (3b), (�) Eq. (3c), (�) Eq. (3d),
nd (�) unbiased.
cale parameter is always approximately unbiased.
The probability estimators were also compared from

ngineering point of view. It is found that the probabi
stimator proposed results in a higher safety than Eq.(3a).
owever, the estimator leading to the highest safety is

3b) though it gives the worst precision of estimation.
It is shown that the estimated Weibull modulus from ac

xperimental data is more dispersive than that from M
arlo simulation, which arises from the fact that the stre
ata from actual experiments does not perfectly follow
eibull statistics. Finally, the unbiased property of the

imated Weibull modulus was validated with actual exp
ental data. It is, therefore, recommended that the prob

ty estimator proposed, leading the unbiased estimate o
eibull parameters, should be used in the linear regre
ethod for estimating the Weibull parameters.
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