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Abstract

Monte Carlo simulations were used to search for the probability estimator for the unbiased estimate of the Weibull parameters in the linear
regression method. Compared with commonly-used probability estimators, the estimator proposed gives a more accurate estimation of the
Weibull modulus and the same estimation precision of the scale parameter. It is found that the estimator proposed is more conservative than
the estimato®; = (i — 0.5)h recommended by previous authors, and hence results in a higher safety in reliability predictions. The unbiased
properties of the estimated Weibull parameters were validated with actual experimental data. It is also concluded that the estimated Weibull
modulus from actual experimental data is more dispersive than that from Monte Carlo simulation, which arises from the fact that the strength
data from actual experiments does not perfectly follow the Weibull statistics.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction wherem andog are the Weibull modulus and the scale pa-
rameter, respectively. The Weibull modulus also called
Weibull statistics has been commonly used to character-the shape parameter, represents the scatter in the fracture
ize the statistical variation in the fracture strength of brittle strength. A highenn leads to a steeper distribution func-
materials such as ceramics, glasses and solid catalydts.  tion and thus a lower dispersion of the fracture strength. The
is based on a “weakest link theory”, which means that the scale parameterg corresponding to the fracture stress with
most serious flaw in the material will control the strength, a failure probability of 63.2% is closely related to the mean
like a chain breaking if the weakest link fails. The most seri- strength of the distributiory.+
ous flaw is not necessarily the largest one because its severity
also relies on its location and orientation. In other words, the — < 1)
. . : . : =ool |1+ 2
flaw subjected to the highest stress intensity factor will be m
strength controlling.
Using Weibull's two-parameter distribution, the cumula- WhereI" is the gamma function. For the Weibull modulus

tive probability of failureP at or below a stress is repre-  of 5-20, a typical range for technical ceramics(1 + 1/n)
sented by2° takes values between 0.9 and 1.
” There are several methods available in the literatute,
P=1—exp [_ <G> ] (1) for the determination of the Weibull distribution parameters
00 from a set of experimentally measured fracture stresses. It
has been shown that the maximum likelihood (ML) method
* Corresponding author. leads to the highest estimation precision of the Weibull mod-
E-mail address: dfwu@seu.edu.cn (D. Wu). ulus, which has been recommended by previous auffs.
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However, the most widely used may be the linear regressionthe unbiased estimation of the Weibull parameters. A Monte
(LR) method due to its simplicity. Moreover, the ML method Carlo simulation was used for this purpose.
results more often in an overestimation of the Weibull modu-
lus than underestimation, and hence results in a lower safety
than the LR method in reliability predictic®®:'4 From an 2. Monte Carlo simulation
engineering point of view, the LR method is, therefore, to be
preferred. From Eqgs(3a)—(3d) it is shown that the probability esti-
In the LR method, the measured fracture stresses aremator should have the f0||owing genera| expression_
ranked in ascending order and then a probability of faiRyre

is assigned to each stress Since the true value df; is un- o i‘J (5)
known, a prescribed estimator has to be used. The following "' = » + g
four expressions are often applied to define the probability
estimatof—12 By varying the values af and g, large numbers of functions
) canbe obtained. Clearly, thevalue is required to be less than
P = i-05 (3a) unity; otherwise a negative value of the probability of failure
n in case ofi=1 arises. Due to the requirement of statistical
i inference, thes-value is also necessary to be very small,
P = n+1 (3b) usually not larger than unity, especially for< 5014 The
‘ disadvantage of a largé-value is that a poor precision of
P = i—03 (3¢) the estimated scale parameter takes pldcEnerefore, the
n+0.4 numeric areas of the and g-values are generally8a <1
i—3/8 andO0<g<1, respectiyely. .
P = Nt 1/4 (3d) If « andp are restricted to two decimals, a total of 101
values are obtained fg¢ and 100 values far due toa < 1.
whereP; is the probability of failure for théth ranked stress ~ And thena = 0.999 is added. As a result, ossible com-
datum, and: is the sample size. binations of thex and g-values are produced. In order to
By taking the logarithm twice, Eq1) can be rewrittenin  search for the combination leading to an unbiased estimate
a linear form. of the Weibull modulus, a Monte Carlo simulation was used,
1 as shown irFig. 1
Inln (1—P> =mlIno — mlnog 4) Eq. (1) can be rewritten as

The Weibull modulus can thus be obtained directly from the 1 1m
o =op|In (6)

slope term in Eq(4) and the scale parameter can be deduced 1-P
from the intercept term.

However, the estimators of the Weibull modulus are al- Ifwe consider alarge “specimen” population with prescribed
ways biased for both the ML and LR methct:1%16|n m andog values, i.emyye andoyg true random strength data
most cases the bias increases rapidly as the sample siz€an be obtained from E¢6) provided random numbers be-
decreases. In the LR method, different probability estima- tween 0 and 1 are substituted for the probability of fail-
tors also lead to different biases of the estimated Weibull ure P. For the sake of convenience, we Igfue=10 and
modulus. It has been shown that E@b) gives the largest-  oo,rue=1 throughout this study. A computer program was
biased estimate of the Weibull modulus, while Hga) written, which used a sample of random numbers to obtain
results in the least bias for>202-12 To overcome this  strengthvaluesi, o, ..., 0;,...,0,. This setof strength val-
shortcoming, several authors proposed the use of a cor-Ues, regarded as a fictitious sample, was ranked in ascending
rection factor to adjust the bias of the estimated Weibull orderand the probabilities of failure were calculated from Eg.
modulus?1516 However, both analytical analyses and nu- (5)with each combination of the andg-values. The sample
merical calculations revealed that each set of strength datawas then analyzed with the LR method to give the estimated
gives the statistically correct Weibull parameters and that value of the Weibull modulus. This procedure was repeated
the bias arises only from the method of adding the param- 10,000 times. Consequently, a total of 10,000 samples were
eters, if one tries to obtain a mean value from a number generated and 10,000 estimated values of the Weibull modu-
of sets of strength dafd.In practice, when only one set of luswere obtained for each combination of hendg-values.
strength data is available, the correction factor should not be Then the mean value, standard deviatiosin and coefficient

applied. of variation C\, of these moduli were computed from
The probability estimator has a significant effect on the

bias of the estimated Weibull modulus in the LR method. _ 10° m;

The objective of this paper is to try to find appropriate ex- ™ = Z w (7)

pressions to define the probability estimator, which leads to j=1
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Random number generator 3. Experimental

$ A sample of alumina agglomerates, often used as cata-
n random numbers £, with 0<P<1 lyst supports in chemical industry, was investigated in this
+ work. The specimens are spherical in shape, with a diameter

of 5.1+ 0.2mm and a pellet density of 1.382 gf&nThey

Weibull distributi : . . ) .
e e are brittle materials fabricated deliberately to produce high

(mye=10 and @y, rue=1)

2 porosity and optimized pore distribution.
= 'L The tensile strength was measured using a diametral com-
S Obtaining of a sample of size n pression test. To adequately characterize the strength prop-
= o Y. R § erties of the population, a sufficiently large number of the
1 strength tests of 500 was performed. A ZQJ-II strength
# tester made in Dalian, China, was used, described in detail
LR estimation program elsewheré:18 The fracture stress was calculated according
(101” @B combinations) to the equation of Hiramatsu and Ok:
v o= 22 (10)
L Estimated values of m nd
; whereF is the load at fracture antis the specimen diameter.

Calculations of average, standard
deviation and coefficient of variation . .
4. Results and discussion

m . S Jand CV, 4.1. Probability estimator for the unbiased estimate of
+ the Weibull modulus

Determination of the a-B By Monte Carlo simulation in Sectid? the combination

of thea andg-values leading to an unbiased estimate of the
Weibull modulus was determined for each sample size, as
listed inTable 1 It is clear thatx and 8 both are sensitive to
the sample size; however, there is no a distinct relationship
existing betweew or 8 and the sample size.

combination with W/m =]

true

Fig. 1. Schematic flow diagram of the Monte Carlo simulation.

co_ § (mj — m)? @© 4.2: Comparisons with the commonly-used probability
m ~ 104 _1 estimators
A Monte Carlo simulation procedure similar to that men-
CV. — Sm 9 tioned in Sectior? was conducted for the commonly-used
m=— ) probability estimators, Eqg3a)—(3d) Fig. 2 shows the de-

pendence of the normalized mean values of the estimated
wherem; is the estimated Weibull modulus of tjt sample.  Weibull moduli,m /mtye, on the sample sizefor five prob-
Clearly, the combination of the andp-values, which makes  ability estimators investigated. It can be seen that with the
m/myye be equal to unity, leads to an unbiased estimate of use of the probability estimator proposed in this work the
the Weibull modulus. normalized mean Weibull moduli are always equal to unity

For illustration of the effect of the sample size, the gen-

erated random samples were of size10, 15, 20, 25, 30, Tablel _ _ _ _
35, 40, 45 and 50. The combination of theand g-values a andg-values in Eq(5) leading to unbiased estimate

leading to an unbiased estimate of the Weibull modulus was” o A
determined for each sample size. 10 0.37 0.24
It should be pointed out that, although the above simu- 1° 0.54 0.85
lation was carried out for the arbitrarily chosen values of gg 8'23 g'ﬁ
myrue=10 andog true= 1 its results are valid for any value of 5, 053 041
mirye @nd oo true fOr previous studies have shown that the 35 0.57 0.64
values ofm/myye and Sm/myue, @and the distribution of the 40 0.56 0.52
estimatedn/my e are independent of the prescribed values of gg g-gé 8'411‘21

mirye andog grue for the LR methoc6:9-10
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Fig. 2. Estimated Weibull modulus as a function of the sample siz3Hg. Fig. 3. Dependence of the coefficient of variation of the estimated Weibull
(3a) (0) Eq.(3b), (A) Eq.(3c), (O) Eq.(3d), and @) unbiased. modulus on the sample size&D] Eq. (3a), () Eq. (3b), (A) Eq. (3c), (O)

Eq.(3d), and () unbiased.

at all sample sizes examined, which reveals that this estima-

tor leads to the unbiased estimate of the Weibull modulus.

Among the commonly-used probability estimators, Ba) An overestimation of the Weibull modulus often leads to an
gives the least-biased estimate of the Weibull modulus for underestimation of the probability of failure at low stresses,
n > 20. The next is Eq¢(3d), followed by Eq.(3c). The esti- and hence a lower safety arises in reliability prediction.
mator, Eq.(3b) leads to the largest bias for all sample sizes  Fig. 4 shows the occurrence probability of the Weibull
examined. Itis also clear that as the sample size decreases theodulus overestimation, i.ei/mye> 1 as a function of the
bias increases rapidly for Eq8a) and (3d)These resultsare  sample size. The higher the probability is, the lower the safety
in agreement with those reported by previous autfors. is. It can be seen frorkig. 4 that the probability for the es-

In Fig. 3, the coefficient of variation of the Weibull mod- timator, Eq.(3a)is the highest; however, it is still less than
ulus is plotted as a function of the sample size. Clearly, the 50% forn > 15. Itimplies that for the LR method with differ-
coefficient of variation is as expected decreasing with in- ent probability estimators, the underestimation of the Weibull
creasing sample size for all probability estimators. It is also modulus always occurs more frequently than the overestima-
shown that the coefficients of variation for the different esti- tion. It is also clear that the estimator for the unbiased esti-
mators are approximately equal at all sample sizes; howevermate of the Weibull modulus results in a higher safety than
it seems the estimator proposed in this work results in the Eq.(3a). However, the estimator leading to the highest safety
least coefficients of variation at most of the sample sizes. is Eq.(3b)though it gives the worst precision of estimation.

Statistics textbook tells us that the higher the probability of
computing an estimate near to the true value is, the higher the

estimation precision is. It indicates that the estimation pre- 5

cision of the Weibull modulus is related not only to the bias S

but also to the coefficient of variation. The latter describes the 2 T e T g 2
dispersion or breadth of the estimated data distribution, while § s | R Lo

the former shows the centrality or location of the distribution. £ @ o, . 5 5, © a ,
The smaller both of them are, the more accurate the estimated Sa | A,
Weibull modulus is. Based on this criterion, the best probabil- 2 & s & & 4 N
ity estimator can be judged frofigs. 2 and 3Apparently, 5 35

the probability estimator proposed in this work, leading to =

the unbiased estimate of the Weibull modulus, gives the most g3 o °
accurate estimation for each sample size, and should, there- & o5 | °o o o ° ° °

fore, be preferred. Among the commonly-used probability

estimators, Eq(3b) gives the worst precision of estimation, 20 e
while Eqg.(3a)leads to the highest precision for 20, which 5 10 15 20 25 80 35 40 45 50
was considered as the best probability estimator by many Sample size, n
authors’12

. . . . . Fig. 4. Occurrence probability of the Weibull modulus overestimated as a
~ From an engineering point of view, the safety is of the function of the sample size(f) Eq. (3a), (0) Eq. (3b). (A) Eq. (3c), (O)
firstimportance, while the estimation precision is the second. Eq.(3d), and @) unbiased.
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Table 2 10
Estimated Weibull parameters of experimental data o
Methods m o0 (N/em?)
8
LR, Eq.(3a) 4.42 168.35 .
LR, Eq.(3b) 4.36 168.53 ST
LR, Eq.(3c) 4.39 168.43 2 5l
LR, Eq.(3d) 4.40 168.40 3
ML 4.43 168.23 2 5¢
2 a4l
k
. . [}
4.3. Estimation of the scale parameter T 3
2+
Similar Monte Carlo simulations were conducted to pro- i |
duce 10,000 estimated values of the scale parameteior

each probability estimator and for each sample size. The 04 06 08 10 12 14 16 18
mean value and the coefficient of variation were calculated. (A) Normalized Weibull modulus, m/m..

And then the 10,000 estimateg were ranked in ascending
order and divided into 40 equally sized intervals. The num-
ber of estimated falling into each interval was counted.
This number, normalized through division by 10,000, the to- 7t
tal number of estimatedlp, produces the relative frequency
of occurrence, which was taken as thealue. The midpoint

of the given interval was used as th&alue. The resulting
histogram can be regarded as an empirical probability den-
sity distribution® For the sake of comparison, the same data
processing was also carried out for the estimated Weibull
moduli.

As an example, the probability density distributions of the
estimated Weibull modulus and scale parameter at a sample 1t
size of 20 are shown iRig. 5, where thex-axes of two sub- ‘
figures have the same range and the same scale. The results %4 06 o8 THo iz 14 16 18
of other sample sizes are similar to those showRi 5. It (B) Normalized scale parameter, oo/ oo, rue

can be seen that all probability estimators give a similar dis- Fo. 5. Probability density distributi e estimated Weibull modul

: H H PG ig. 5. Probability density distributions of the estimate elpull modulus
trlli')utl(_)n of UO/ZO,true :Ihat scatters in the Vlcgltytﬁft;heﬁqz I (A) and scale parameter (B) at a sample size20. (O) Eq. (3a), (0) Eq.
value in a much smaller range, as compared with the Weibull 5" 1y g4 (3¢), () Eq. (3d), and @) unbiased.

modulus. In reality, for any sample size the coefficient of

variation of the estimated scale parameter is about one tenth

of that of the estimated Weibull modulus; therefore, the scale true values of the Weibull parameters can be obtained def-
parameter can be estimated with accuracy about an order ofnitely only for an infinite number of specimens. However,
magnitude higher than the Weibull moduf&! FromFig. 5, a sufficiently large number of tested specimens will give a
it is also clear that for the estimation of the scale parameter, quite good approximation. Especially, the Weibull parame-
there is no significant difference between the probability es- ters estimated with the maximum likelihood method may be
timator proposed in this work and the commonly-used ones. regarded approximately as the true values.

Note that the distribution ofi/myye is asymmetrical and The advantage of the unbiased estimate is that the mean
lightly skewed to the right; the distribution eb/0¢ true, how- Weibull modulus from a number of sets of strength data
ever, takes an approximately symmetrical form. Similar re- should be close to its true value, which can be verified by
sults have also been reported by Khaliliand Kronforany — the following procedure. The 500 experimentally measured
sample size and any probability estimator, the mean value offracture stresses were treated as a full set. To investigate the
the estimated scale parameter is always close to its true valueeffects of the sample size, the subsets of the full set were se-
and its bias is negligible. Therefore, the estimator of the scalelected in groups of 10, 15, 20, 25, 30, 35, 40, 45 and 50. The
parameter obtained with any probability estimator is approx- subsets were selected randomly from the full set by assigning

Relative frequency, %

imately unbiased. a computer-generated random number to each member of the
full set, sorting the stress data according to that number, and
4.4. Experimental validation then choosing the first 10, 15, etc., results in the full set. Each

subset was considered as an independent set of data, and its
Table 2gives the Weibull parameters of the experimen- Weibull modulus was estimated with the LR method with
tal data, estimated with different methods. In principle, the the estimators, Eq$3a)—(3d) and the estimator proposed in
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4.8 In Fig. 7 the coefficient of variation of the estimated
P Weibull modulus of experimental data is plotted as a function
of the sample size, where the dotted line is the curve fitting
467 ° result of the data points shown Fig. 3. It can be seen that
'i N the coefficient of variation of the Weibull modulus decreases
= a 4 2 2 3 a with increasing sample size, but independent of the prob-
g a % 8 5 o o o ability estimators, as similar to the results of Monte Carlo
3 485 886 8 A 4 & s a simulation. It is also clear that the coefficient of variation
2 42¢ from actual experimental data is always higher than that from
§ a1f o o ° Monte Carlo simulation at any sample size. The reason for
= .ol o o ° this phenomenon is that the strength data from actual experi-
’ o ments does not perfectly follow the Weibull statistics, which
3or ° aggravates the dispersion of the estimated Weibull modulus
3.8 of actual experimental data.

5 10 15 20 25 30 35 40 45 50
Subset size, n

Fig. 6. Weibull modulus of experimental data as a function of the sample S. Conclusions
size. (D) Eq.(3a), (¢) Eq.(3b), (A) Eq.(3c), (O) Eq.(3d), and ) unbiased.

Using a Monte Carlo simulation, a probability estimator
for the unbiased estimate of the Weibull modulus was deter-
mined. Compared with the commonly-used probability es-
timators, the estimator proposed gives a more accurate es-
timation of the Weibull modulus, and the same estimation
precision of the scale parameter, which is much higher than
that of the Weibull modulus. Itis concluded that the estimated
scale parameter is always approximately unbiased.

The probability estimators were also compared from an
engineering point of view. It is found that the probability
estimator proposed results in a higher safety than(E&aj).
However, the estimator leading to the highest safety is Eq.
(3b) though it gives the worst precision of estimation.

Itis shown that the estimated Weibull modulus from actual
experimental data is more dispersive than that from Monte
Carlo simulation, which arises from the fact that the strength
data from actual experiments does not perfectly follow the
Weibull statistics. Finally, the unbiased property of the es-
timated Weibull modulus was validated with actual experi-

this work. By repeating this procedure, the total number of

the subsets for each sample size amounts to 10,000. Finally
the mean value and the coefficient of variation of the 10,000

Weibull moduli were calculated for each sample size and for

each probability estimator.

Fig. 6 shows the dependence of the mean value of the
estimated Weibull modulus of actual experimental data on the
sample size. Note that the only probability estimator which
has leveled off as a function of the subset size is the one
proposed in this work. And this estimator yields a Weibull
modulus, which is very close to the true value approximated
by the ML method. Thus, it can be seen that the probability
estimator proposed in this work is certain to give the unbiased
estimate of the Weibull modulus. However, the estimators
of the Weibull modulus, obtained with the commonly-used
probability estimators, are always biased.

0.34 mental data. It is, therefore, recommended that the probabil-
.‘. ity estimator proposed, leading the unbiased estimate of the
031t i Weibull parameters, should be used in the linear regression
. 5 method for estimating the Weibull parameters.
5 o028t
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